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Abstract: The Direct Stiffness Method (DSM) is the most straight forward technique for assembling the system matrices required for Finite 

Element Method (FEM). In this paper, DSM has been used to find displacement components of nodes, the reaction force components at 

different nodes, element displacements and strains and stresses of element in truss structures. As a comprehensive example of two 

dimensional truss analyses, the structure is analyzed to obtain displacement, reaction forces, strains and stresses using FEM. All the 

calculations are done manually and checked by using MATLAB programming. 
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1. INTRODUCTION 
The mathematical root of the finite element method goes 

back to the history at least a half century. Approximate 

methods for solving differential equations using trial 

solutions are even older in origin. Lord Rayleigh and Ritz [1] 

used trial functions to approximate solutions of differential 

equations. Galerkin [2] used the same concept for solution. 

The deficiency in the past approaches [6] as compared to the 

present finite element method, is that the trial functions have 

to apply over the whole domain of the related problem , while 

the Galerkin method provides a very highly approach for the 

finite element method. 

In modern ages between 1980 and 2000, the work on  finite 

element method has been increased for the implementation in 

pressure vessels, shell bending and basic three dimension 

situations in elastic structural analysis [4,5] with also fluid 

flow and heat transfer [7]. More expedition of FEM is in 

deflection and dynamic structure [8] that has been also 

represented during these decades. 

The term displacement is comparatively general in the finite 

element method and can represent for example, physical 

displacement, temperature and fluid velocity. First of all this 

term was used by Clough in [3] in the topic of plane stress 

analysis and it has frequently used since current days. 

 

2. MATERIAL AND METHODS 
2.1 Finite Element Analysis 

When external loads are applied to a system then stiffness 

matrix is used to calculate the relation between loads and 

displacements. We can get strain and stress of each element, 

which we want after using backward substitution of 

displacements into each element equations. This technique is 

called DSM by using FEM.   

There is another scheme named Flexibility Method [17] in 

FEM. These problems are non-structural in which 

„displacements‟ are given as „quantities‟ and „forces‟ are 

given as „variables‟.  

If we find stiffness matrix in the direct stiffness method that 

has quality of every element which is changed from the 

element coordinates system to the global coordinate system. 

First we find element stiffness matrix of every changed 

element then element values are directly subtituted to the 

global stiffness matrix. This concept helps to make the 

element transformation and stiffness matrix assembly 

procedure. 

When we operate direct stiffness matrix in FEM, we see that 

global node is mathematically dull. 

Finally, we can use another signification in place of stiffness 

method, is displacement compatibility [18-20]. It also uses to 

make procedure. It is assured that algebraic back tracking is 

used to find strain and stress.  

2.2     Nodal Equilibrium Equations 

First we make element equations by using element 

coordinates to global coordinates and assembly of the global 

equilibrium equations in the two dimensions. A simple two 

dimension truss made of two structural members converted 

with pin and with condition, external forces will be applied. 

The connection of pin holds at node and element numbers 

with global coordinate system.  

Symbolically, we use 
12 iU  as a global displacement. The 

sense of 
12 iU  and 

iU 2
 is that 

12 iU   is displacement of global 

X-direction of node i and 
iU 2  

is displacement of global Y-

direction of node  i  . We use odd and even numbered for the 

displacements in the direction of the global X-axis and Y-axis 

respectively. 

Comparing vector components of element displacements to 

global displacements, we have 
     
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eee
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We know that component v  displacement is not related to 

stiffness of element, so it will also not be related to element 

forces. Thus, the axial deformation of the element becomes as   
                 sincos 241312

eeeeeee UUUUuu      (2) 

Net axial force operating on the individual becomes as 
                   sincos 2413

eeeeeeee UUUUkkf      (3) 
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Figure: 1  (a) Nodes and elements number in truss structure          

(b) Element with symbol of global displacement. 

The equilibrium relation between two element trusses is 
       11126115

1 cossincos FUUUUk     
       21126115

1 sinsincos FUUUUk     
       32246235

2 cossincos FUUUUk    
       42246235

2 sinsincos FUUUUk  

        2246235

2 cossincos  UUUUk
       51146135

1 cossincos FUUUUk     

        2246235

2 sinsincos  UUUUk  

       61126115

1 sinsincos FUUUUk                         

We can summarize this equilibrium system as  

 K    FU   
where 

[K] = Global stiffness matrix 

{U} = Nodal displacement vector 

{F} = Nodal force vector   

2.3 Transformation of Element 

A direct method is a process which is used to find-out the 

essential properties on an element by element base. The bar-

element equation then expressed as  
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Global coordinates have the relation of element displacement 

and element axial displacement of coordinate system. 

We use symbolically cosc , sins . By applying matrix 

multiplications on R.H.S of above equation, it becomes: 
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Where 
L

EA
ke

Characteristic axial stiffness of any element. 

Its determinant should be zero because we know that stiffness 

matrix will remain singular after transformation. 

2.4 Direction Cosines 

A finite element model can be designed by representing 

nodes at specified coordinate system after the definition of 

element having nodes and connected by each element. 

Length of element in general form is 

    2
1

22

ijij YYXXL 
 

where nodes i and j are represented as  ii YX ,  
and  

jj YX ,  in 

the global coordinates. Now we represent unit vector as  

     JIJYYIXX
L

YXijij  coscos
1


    29.4  

i and j are called  unit vectors in the global coordinates 

directions of  X and Y respectively. 

The direction cosines are written as 

L
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2.5 Direct Assembly of Global Stiffness Matrix 
The formulation of element stiffness matrix in global frame-

work can be obtained by using equation (5) as:  

for element (1) 
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Similarly for element 2 we are changing superscript. 

Elements displacement location vectors for the truss of Figure 

1 is  

Location vector for element-1:        65211 L  

Location vector for element-2:        65432 L   

2.6     Boundary Conditions, Constraint Forces 

After getting the global stiffness matrix with the help of 

equilibrium equation or the direct stiffness method, the global 

displacements and applied forces for the Fig. 1, is of the form 
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We cannot find direct unique solution of global stiffness 

matrix because this is a singular matrix. In order to develop 

such type of questions, we are unable to take into account the 

constraint fixed on system displacements by the help of 

condition to disqualify rigid body motion. For this purpose, 

we can use displacements boundary condition as  

04321  UUUU  

Only U5 and U6 displacements are left for taking continue 

process. Applying this boundary condition on equation (4), 

we get 

6666565

5656555

4646545

3636535

2626525

1616515

FUKUK
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FUKUK
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
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
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          (6) 

Above system has been reduced. In this reduced system F1, 

F2, F3 and F4 are the reaction forces on nodes 1 and 2. On the 

other hand, F5 and F6 are applied external forces of global. 

For finding U5 and U6, we will use external force 

components, to find these components values, we will solve 

the last two of equations (6). 
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This is a more general approach to find boundary conditions 

and evaluation of forces. If we use subscript c  on 

constrained displacements and a  on active (unconstrained) 

displacements. The above system of equations can be reduced 

as 
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Here, Uc 
values are given and follow them Fa. Since Ua values 

are not given and we have to find by using sub-reduction as 

       aaaacac FUKUK   

         cacaaaa UKFKU 
1

             (7) 

We can use in a truss structure and we have assumed before 

that  cU  should not be zero. After finding the values of 

displacement from equation (7) then applying these 

displacement values, we have the following reaction forces 

system as  

       acaCccc UKUKF 
  (8)

 

By the symmetry of the stiffness matrix, we can write, 

   Tacca KK   

2.7     Strain and Stress in an Element 

The concept of the strain and stress in global displacements 

system are the final evaluation to the solution of the truss 

problem by using finite element method. For connecting 

nodes i and j , the element displacements in the global 

coordinates are represented as  
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Now we can find element axial strain by above equation as 

 
    

    
 

 









e

eee
e

u

u
xNxN

dx

d

dx

xdu

2

1
21

 
 

 

   

e

ee

e

e

ee L

uu

u

u

LL

12

2

111 



















 

where Le represents element length. Also, we can find axial 

stress as 
   ee E   

We can find the element displacements by using the global 

but its converse does not hold yet. Therefore, the element 

strain according to global displacements is as 
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Here, the transformation matrix of element is denoted by  R . 

And the element stress according to global displacements is 
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The element is in tension means the value of stress is positive 

and compression holds when its value is negative. 

 

MODEL PROBLEM DISCRIPTION 
As a comprehensive example of two dimensional truss 

analyses, the structure shown in Fig. 2 is analyzed to obtain 

displacements, reaction forces, strains, and stresses. While we 

do not include all computational details, the example shows 

the required steps, in sequence, for a finite element analysis. 

 

 
Figure: 2   (a) Every individual element has 25.1 inA  ,

psiE 61010 . (b) Nodes, elements and global 

displacements. 

we know that from equation (5) 
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From Figure 2, we have 

Length of elements is
 

40875431  LLLLLL

 24062  LL

 
Characteristics equations of elements are 

inlbkkkkkk /1075.3 5
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 The nodal coordinates are 
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For Elements-1, 3, 5 and 7: 
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For elements 4 and 8: 
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For Element-2: 
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For Element-6: 
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Table: 1   Global displacements according to elements. 

Global 

Displacement 
Element 

 1 2 3 4 5 6 7 8 

1 1 1 0 0 0 0 0 0 

2 2 2 0 0 0 0 0 0 

3 0 0 1 0 0 0 0 0 

4 0 0 2 0 0 0 0 0 

5 3 0 0 1 1 0 0 0 

6 4 0 0 2 2 0 0 0 

7 0 3 3 3 0 3 1 0 

8 0 4 4 4 0 4 2 0 

9 0 0 0 0 3 1 0 1 

10 0 0 0 0 4 2 0 2 

11 0 0 0 0 0 0 3 3 

12 0 0 0 0 0 0 4 4 

Location vector for each element and element node 

connectivity table. 

Location vector for element-1:   65211 L  

Location vector for element-2:   87212 L                 

Location vector for element-3:   87433 L    

Location vector for element-4:   87654 L  

Location vector for element-5:   109655 L  

Location vector for element-6:   871096 L  

Location vector for element-7:   1211877 L  

Location vector for element-8:   12111098 L  

Table: 2   Relationship of connectivity between elements and nodes. 

Element 
Node 

Element 
Node 

i j i j 

1 1 3 5 3 5 

2 1 4 6 5 4 

3 2 4 7 4 6 

4 3 4 8 5 6 

Now we find the resulting components (individual terms) of 

the global stiffness matrix. 

Node 1 and 2 are fixed. The displacement constraints 

04321  UUUU  

 The global equilibrium equation
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 we use dash line for showing reaction forces and active 

displacements in prominent style. Also, they have been 

resolved into parts which are shown in the equation as 

follows         
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Solving above system of equations governing the active 

displacement, we have 
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Now we can find all the reaction forces with the help of 

equation (8) as  

       acacccc UKUKF   

It becomes as 

iiii FUKUKUK  1212,6655 .....................  , 4,3,2,1i  

For i=1: 

1212,16165151 ....................... UKUKUKF 

     

  
lb1200010

000004619.0325.1

01600.0325.1002133.075.3
5 














Similarly for For i=2, 3, 4 

1212,26265252 ..................... UKUKUKF  lb4000  

1212,36365353 ..................... UKUKUKF  lb6000  

1212,46465454 ................... UKUKUKF  lb0  

Therefore, the system of reaction forces is 
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Now we shall find element displacements  

For Element -1: 
 
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Similarly for Element i=2, 3, 4, 5, 6, 7, 8: 
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 Now we shall find axial strain for each element  

 
   

 e

ee

e

L

uu 12 


 
For Element i=1, 2, 3, 4, 5, 6, 7, 8:

 
  41 1033.5  ,   42 1077.3 

 
  43 1000.4  , 

  44 1034.1 

 
  45 1034.5  , 

  46 1066.5 

 
  47 1067.2  , 

  48 1000.4 

 Now we will find corresponding axial stress for each 

elements by using equation  
   ee E 

 For Element i=1, 2, 3, 4, 5, 6, 7, 8: 
  31 1033.5  ,

  
  32 1077.3 

 
  33 1000.4  ,

  
  34 1034.1 

 
  35 1034.5  , 

              
  36 1066.5 

 
  37 1067.2  ,

  
  38 1000.4 

 
Table: 3   elements values of strain and stress 

Element Strain Stress 

1 41033.5   5330  

2 41077.3   3770  

3 41000.4   4000  

4 41034.1   1340  

5 41034.5   5340  

6 41066.5   5660  

7 41067.2   2670  

8 41000.4   4000 

 
 

 
Figure: 3 Graph for eight elements values of strain and stress. 

 

4.    CONCLUSION 
Two linear mechanical elements, the idealized elastic spring 

and an elastic tension compression member (bar) have been 

used to introduce the basic concepts involved in formulating 

the equations governing a finite element. The element 

equations are obtained by both a straightforward equilibrium 

approach and a strain energy method. The principle of 

minimum potential is also introduced. The one-dimensional 

bar element can be used to demonstrate the finite element 

model assembly procedures in the context of some simple 

two and three dimensional structures. 

This research develops the complete procedure for 

performing a finite element analysis of a structure and 

illustrates it by several examples. Although only the simple 

axial element has been used, the procedure described is 

common to the finite element method for all element and 

analysis. The direct stiffness method is by far the most 

straightforward technique for assembling the system matrices 

required for finite element analysis and is also very amenable 

to digital computer programming techniques. 
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